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Cone Quasi-Concave Multi-Objective Programming:
Theory and Dominance Cone Construction

by
A. Chames
Z. M. Huang

J. J. Rousseau
D. B. Sun
0. L. Wei

Abstract

Some basic theory of "cone quasi-concave multi-objective programming" is developed. This
new class of vector extremal problems with quasi-concave multiple objectives employs ideas of non-
dominated solutions associated with dominance cones. Necessary as well as sufficient conditions for
optimal solutions to such problems are provided. A simple example illustrates the concepts involved.
In addition, for general applications in economics, it is shown how to establish dominance cones to
realize producer priorities, consumer preferences, and other concerns exogenously determined.
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Cone Quasi-Concave Multi-Objective Programming:
Theory and Dominance Cone Constructions

by
A. Chames

Z.M. Huang
J. J. Rousseau

D. B. Sun
Q. L. Wei

1. Introduction
In the multi-objective programming literature, many authors presume the concavity of objective

functions in seeking Pareto-optimal solutions. Following the basic ideas of goal programming introduced
by Chames and Cooper [3], [4], and [5] in the early fifties and developed through the sixties, Yu [22], and
Beregstresser, Chames and Yu [2 generalized Pareto-optimal solutions to nondominated solutions and
developed them in the objective space of multi-objective problems. Chames, Cooper, Wei , and Huang
[81 studied the properties of nondominated solutions in decision spaces which were normed vector
spaces. They further developed new approaches and applied them to extensions of game theory [9].
Chames, Huang, Rousseau, and Wei [10] also initiated and developed "T-non-dominated efficiency" for
multi-payoff n-person games with interacting "cross-constrained" strategy sets as vector extremal
principles for solutions of such games.

A great deal of research effort has been expended on the theory of quasi-concave functions for
economic studies. Many utility functions and production functions are quasi-concave rather than
concave. Especially for their economic applications, Diewert, Avriel, and Zang [13] and others have
achieved important research results on the properties of general quasi-concave functions. Arrow and
Enthoven [1], Mangasarian [15], Ferland [14] and others focused on single objective quasi-concave
programming with quasi-concave objective and constraint functions. Their methods, however, do not
extend in any immediate way to multi-objective programming, since a non-negative linear combination of
quasi-concave functions is not necessarily quasi-concave. Craven [12] considered a special case of multi-
objective programming assuming that the weighted sum of the objective functions is pseudo-concave for
each suitably chosen set of weights. This approach does not apply either, since a pseudo-concave
function must be a quasi-concave function [15]. So far as we know, with the exception of the discussion
in [10], little has been touched upon in quasi-concave multi-objective programming, especially as related
to new ideas of solutions of games with interacting or "cross-constrained" strategy sets [10].

In the present paper we develop some basic theory of "cone quasi-concave multi-objective
programming", a new class of multi-criteria decision problems, which incorporates nondomi-
nated solutions associated with dominance cones. Necessary as well as sufficient conditions for
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optimal solutions to such problems are also obtained. With dominance cones appropriately

constructed, the resultant non-dominated solutions, which are actually a subset of the Pareto-

optimal solutions, should be more desirable in the sense that they are better suited to the needs,

obligations, and preferences of decision makers. A simple example illustrates the concepts

involved. In addition, we show how to establish dominance cones to realize producer priorities,

consumer preferences, and other concerns exogenously determined.

2. Generalized Cone Concavity and Nondominated Solutions

In this section we review some relevant results regarding cones, their polar cones,

generalized cone concavity and nondominated solutions for later use in our development. We

also derive some properties of generalized cone concavity.
A set S in En is convex iff xl x2E S implies that Xxl + (1-X) x2E S for all 0 < X<1. A set S

is a cone iff xe S and . 20 imply that . X r S. S is a convex cone iff S is a cone and is convex.

Thus, S is a convex cone iff xi x2e S and X1, X2 > 0 imply that X. xi + X1 x2 E S.
For an arbitrary set S in En, let 7 e 1, where 9 denotes the closure of the set S. Denote

the "tangency cone" of S at X by T (S, 7), where T (S. Y) = {h e En: there exists a sequence

{xk) and a sequence {;.k) such that h a im;k (xk - 7), with xk e S, .k > 0, and lm = .
k-) k.-) oo

Further, denote the (negative) polar cone of S by S* where S* = {y e En : xt y -< 0 for

all x e S) (the superscript "t" denotes transpose). A cone A in En is said to be acute if there

exists an open half-space H = {x e En : at x > 0, a # 0) such that A c H U (0).

Cones, polyhedral cones and polar cones in En are discussed further in Rockefellar [17],

Stoer and Witzgall [21] and Yu [221. More general results in normed linear spaces are

derived in Chames, Cooper, Wei and Huang [8].
Proof of the following lemma may be found in [8], [17], [21] and [22].

Lemma 2.1: Let A and A1 be cones in En.

(i) f: Al then A* n Al

(i) Int A* * if and only if A is acute

(iii) If A is a convex cone then (A*)* - A

2



(}v) When A is acute,

lntA* = {ye En: xty<O forall x e A,x * 0 and

A r) (-A) = (0)

Definition 2.1: Let S be a convex set in En and A be a convex cone in Em. A real -valued

vector function g:S - Em is called "A - concave on S" if

g(). x1+(1-x 2) - (X g (xl) + (1-;.) g(x2 ) )eA

for all x',x2 S and X e(0,1).

Definition 2.2: Let S be a convex set in En and A be a convex cone in Em. A real-valued

vector function g : S -4 Em is called "A-quasiconcave on S" if

g(X.x1+(1-X)x 2 )-Min{g(xl), g(x 2 )}eA foralxl,x 2 eSandX e(0,1).

and is called "strictly A-quasiconcave on S" if

g(.x 1+(1-X)x 2)-Min{g(x0), g(x 2)) e IntA forallxl*x 2 E SandX e (0,1),

where

(in (gi (x'), gi (x2))

Min [g (0i), g (x2 ) - 1 mng (),m(X)I

From the definition above, a real-valued function g defined on a convex set S is quasi-

concave [15] ff

g(I.x1+(1-X)x 2)-Min g(xl), g(x 2) } 0 0forallx 1, x2 e S and)X e(0,1),

and is strictly quasiconcave [14] iff

g(X x1+(1-X) x2)-Min(g(x0), g(x2)}>0 forallx 1, x2 e Sxlx 2,and

X E (0,1).
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(The name Opit-freeo for quasi-concave and "strictly pit-freeff for strictly quasi-concave has been
suggested in the past as a mnemonically better rendition of these properties)

Lemma 2.2:[151 Let S be a convex set in En and g be a differentiable real-valued
function defined on S. g is quasi-concave on S iff for any X1, X2 6 S, g (x2) g (xl) implies that
V g (xl) (x2- x1) 2t0, or equivalently, for any x1 -x2 e S, V g (xl) (x2-x1) <0 implies that g Ax2 <g (01).

Definition 2.3: Let S be a convex set in En and A be a convex cone in Em. A real-valued
vector function g :S --* Em~ is called "A (1) --strictly quasiconcave on S" if g is A -quasiconcave and

pi gj is strictly quasiconcave on S for any nonzero p e -A* where p -- (p1, .. ., pi, -. p -, p).t

Lemma 2.4[1OJ: LetSbeaconvexsetinEn, Abe aconvex cone inEm, and g: S-* E"'bea
real-vahjed vector function. If, for aNl ae Em , the set S. - Ix e S :g (x) 6 a + Al is convex, then g is

A-quasiconcave on S.

We now give our definition of the class of "vector extrema" or multi-objective programming

problems we shall consider.

Definition 2.41: The multi-objective programming problem is defined in terms of a set of
objectives L - (1, 2, .. ., t) ;1 real-valued functions fj , j e L, the objective functions; a real-valued

vector function g = (gl, . .. ,gin), the constraint function; a convex set S, the domain of all 1j and g;
a convex cone K in Em, the constraint cone; a convex cone W in Et, the dominance cone; and

X WK = Ix = (xi, - - , X1n) :g (X) e K x ES ), the constraint set. The multi-objective programming

problem is therefore formulated as

(W-K-P) (Max (f, (x),..., f, x))

Definition 2.5: A point -X e X (K Is called a nondominated solution of (W-K-P) associated
with W I there does niot exist any point y e X (K)such that

(....fj (Y)....)t e( .... I (N)....)t +W

fp)* Ij(x forsomejoe L.

The corresponding point (f 1 (R), .. ft (x))t in the objective space is called a nondominated point

associated with W.
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For many purposes in economics and elsewhere, what we seek are Pareto-optimal solutions to

such multi-objective programming problems. (See, Chames, Huang, Rousseau and Semple [9] and

Chames, Huang, Rousseau and Wei [10].) Note that if we set the dominance cone W = El+, the

nonnegative orthant, then the nondominated solutions of (W-K-P) associated with EI+ are precisely

the Pareto-optimal solutions. The particular subset of Pareto-optimal solutions from which a final

choice is to be effected (for example, by a regulatory agency) will depend on the preferences of the

decision-making body over the outcomes in the objective function space (i.e., the nondominated or
Pareto-optimal points). By applying different dominance cones W : Et+. the set of solutions can be

further restricted in accordance with such preferences.

To illustrate what is involved, consider the simple two-variable case where two objective func-

tions fl (X1, x2) and f2 (xl, x2) are to be maximized subject to a certain constraint set. Figure 2.1 depicts

the decision space and its mapping into the objective function space. The (nondominated) Pareto-

optimal solutions given by the sets 11, 12 and 13 are mapped into (nondominated) Pareto-optimal

points denoted by the sets J1, J2 and J3 , respectively, so that

A = (fl (li), f2 (li)), i = 1, 2, 3.

Pareto-optimal Pareto-optimal

solutions f2 points

I (f 1  f2 ) ,

122

X(K '3

13

0 X l 0 f

Figure 2.1
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A preference for objective fI over objective f2 will lead the decision maker to focus on the

points of J2 and J3 . Accordingly, a dominance cone W1 can be established as shown in Figure 2.2.

Associated with W1, the points of J1 are no longer nondorninated. Consider, for example, the point (fl

(-x), f2 (X) ) which Des in J1 and is Pareto-optimal. Associated with the dominance cone W1, (fl (), f2

x) is dominated by the point (fl (y) , f2 (y)) (which is also Pareto-optimal) since (fl (y) , f2 (y) can be

expressed as (f (x, f2 M ) + w, where w is a vector in W1. Thus, (f1 (Y), f2 (Y) ) fl (-X f2 X)

+ W1. Associated with W1 , only the points of J2 and J3 remain nondominated, and the possible

solutions are therefore restricted to those of 12 and 13. Similarly, a preference for f2 over f1 will lead to

elimination of the points of J3 by using the dominance cone W3 . Associated with W3 , only the points

of J1 and J2 are nondominated, and the solutions are this time confined to those of I1 and 12. A

balance between the two objectives will focus attention on the points of J2 . This will require a

dominance cone W2 = W1 U W3, in which case only the points of J2 and solutions of 12 are

nondominated.

f2 JW 1

(fl (Y)' f2(y)) 2

W3

W2 J3  .

0 fi

Figure 2.2
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Note that in each case the dominance cone contains Et. Otherwise, some of the nondominated

solutions would not be Pareto-optimal. This is illustrated In Figure 2.3, where J1 U J2 is the set of

Pareto-optimal points, but JoU J1 UJ2 is the set of nondominated points associated with the domi-

nance cone W which is smaller than the nonnegative orthant. In the present paper we shall focus only

on dominance cones which contain the nonnegative orthant El, and in Section 4 we show how

dominance cones can be constructed to achieve what is required.

f 2

W

,J2

0 f1

Figure 2.3

3. Cone Quasiconcave Multi-objective Programming

Arrow and Enthoven [11] considered the single objective programming problem where the

objective function and constraint functions are quasiconcave. However, their method does not

extend to multi-objective quasiconcave programming since a nonnegative linear combination of

quasiconcave functions Is not necessarily quasiconcave. For example, f1 (Xl, x2) = x3 and

f2 (XI, x2) - 2 are both quasiconcave, but f(xl, x2) + f2 (xl, x2) - x + x2 is not quasi-concave.
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Craven [12] considered a special case of mufti-objective programming in which he assumed that
pj fj is pseudoconcave for each p - (Pl ..... p)t _ W*. This approach is not suitable either,

je L

since pseudoconcave functions must be quasiconcave [15] and sums of quasiconcave functions

need not be quasiconcave.

We first provide (in Theorem 3. 1) sufficient conditions for a solution to the problem

Max I fj(x)

x e X, where X C En is a convex set. This is accomplished by partitioning L - 12,..., 4 into k

k
sub-groupsT 1, i 1 .... k (i.e., Tin Tj 0, i*j and Ti - L), such that fJ is quasi-concave

jeTi

for each i 1 ... k.

We then develop several theorems for solutions to cone quasi-concave multi-objective pro-

gramming problems, a new class of multicriteria decision problems, which incorporates non-dominated

solutions associated with dominance cones. Necessary conditions for solutions to such problems are

given in Theorems 3.2 and 3.4, while sufficient conditions are given in Theorems 3.5, 3.6 (based on

Theorem 3.1), 3.7, 3.8, and 3.9.

Theorem 3.1: Let D and X be convex sets with D D X and (fj(x)) j r L be differentiable on an

open set containing D. Let {Ti : i - 1, . . ..k } be a partition of L such that for each i,

I fj (x) is quasi-concave on D. Let 7 r X.

(i) Ifforeachi(1 < i<k),, XVfj (R) (x-) < 0 for all x e X, and there exists at least one

jel

xi e D such that Y, fj (X-) (xL7) < 0

or

(ii) If {f](x)}jG Lare twice differentiable on D and for each i (1 < i5 ;k) XVfj (g)(x- )=0 foral

8



x r= X and there exists at least one xi e D such that ,v f1 (R-) (,cL7)> 0, then R is a solution of
jeT

Max Y, fi(x) s.txEx.
jL

Proof:
k

(i) Forany x X and 0 - 0:51, 0:5 m:1, m.1,...,k with 0+ 1 OM=1
m=1

Let x(0) 0 Ox+ I em xm. Then
m= 1

k
'Vt V-) (x (o).) Vtj(X-) (0(X..) + Y, 0 (xm-X))

= 0 1 Vfj(x-) (X- )+ 7, em I Vtj(X) (Xm--X)

M o I Vtf(X) (x4~)+ 0 i Vt Vf-) (x -)
j e T jelTl

k
+ rn- I Vtj (X-) (x M~
m*i e Ti

<0 torOi>0

Since fi (x) is quasiconcave, by Lemma 2.2, we have

16Ti

Xf i(X (0)< Y fj (-) for 0i >O
JEr=Ti j ETI

Letting 0 -4 1i+.we have x(0) - x, by continuity otf Y)j 6L. we have fj(x(
j E TI

Sfj (x ), hence
je T

Y, fj (x 5 1 fi (-x for every x eX

9



k k
Then f j(x) - I I t(x) : 1 Y X fj ()= f (R-) forallxe X.

jeL i1 jeTi i jeT jeL

(ii) Assume to the contrary that Y is not a solution i.e., there exists some x e X such that

e TI JeTi

Then there exists at least one i E {l ... , k) such that Y f, (x))> t f
je je T

By quasiconcavity of Y 1, we have
Ice Ti

Y fJ(x + g (X-)) a Y fJ(x) foraUO< . 1
je 1 je'

By the continuity and quasiconcavity of fj, there exists f'te [0, 1) such that
eT

Y fj (X +g (X-))= X fj(-') forOpp * (3.1)
jeTl, leT

Z fi ( +L (x-X)) X fj ) forp* < g51 (3.2)
je'T1 jeT

Since I Vfj (j) (xi -R) > 0 with (3.1) and (3.2), there exist two sequence {Pn} with pIn > 1t* and

n-- p.',and (vnj with vn >OanI vn-+0suchthat

(X. + A n (X-X)) , t f - + +V n (Xi-x) (3.3)

First, suppose p> , let On - - it is clear that On --*O+asn-- a.

10



Since R+ W (X-7) +On vn (XLiR) -- n)(X- +PnQ-g) ) +On (X- +vn (XLR)).

By quasiconcavity of , f , (3.3) implies

je~ ~ ei Ic

By (3.1) and (3.4), we have

f(- +ji.(x-7) + On vn (xLg))- ~( +j(-R-) ) /On Vn

r= T 1  j r=T 1

(SI t (x W Vfj(R) + 'On v0 isfini te (7ehanv

Urn (11O + vtj(X))/v
j-~ Ee~ TejE j

0 / n f (1/s +vfn ((XL) -I t(X)/v
jflT-* T

Sic f(R x3+ 000niewhv

j e1T



and

Em ( X V(X X O n k ( ~+V (X- i)))/rf
n )-je Tj le Ti

- ~ q W Vf+(X- I) (XL 3f

This contradicts (3.5).

Now suppose Wi -=0. By (3.3) and quasiconcavity of 7, f, we have

tj~ (+vn (XL'))(x X) - Vn (3.6) ) t

je Ti j eTi

Since IVt) (x-*) -0and
je T

Em ( X- + n(LX))X-)V

Em (7,Vf1 (i-+Vn(XL))(*i7)-7,Vfj (X-)(X-R))/Vn

IET,

00o

12



we have

Im [P (X -+Vn X))) IVn] (X) -0
n --)0 je T,

But

Im YVfj ( + Vn(XL7X)) (e-X) -  Vfj (X (x-)> 0
n -->. ii~ JETI,

This contradicts (3.6) Q.E.D.

Corollary 1: Let S be a convex set in En. Let (f (x fe L be differentiable functions, g (x)

be an m-dimensional differentiable ET- quasiconcave function, all defined on an open set which

contains S. Let I fj(x) be quasi-concave on S and let (i, 3-) satisfys
je L

IT. Vfi (7) + VVg(-) = 0

je L (3.7)

g ('x >O, R es (3.8)

tg-1 ,!O (3.9)

(i) if there exists some x1 e S such that

7,Vfi(-)(xl-Rx) < 0

JeL

or

(ii) i there exists some x1 e S such that

,VfJ (-) (X1--X)* 0

jeL

and {fj} jL Lare twice differentiable in S, then g is a solution of Max I fY(x), s.t. g (x) ! 0, x e S
r=L

13



Proof: Since gj is quasiconcave In S for each 1 (1:j :i m), it is easy to check that X - (x e S:

g (x) > 0} is convex set. Let T1 . L and 1 - ( 1, ... , m)t " By (3.8) and (3.9), for! i > 0 we have

gi () - 0, hence VgiM (x--) k 0 for al xe X by quasicoravity of gi. Then we have

m
Vfj (x (x--) - - 7, rXEv , (x--)

jeL i=1

<0 foraix =X (3.10)

(i): By (I) of the Theorem 3.1, we know that R is a solution of Max I fj(x),

jeL

s.t. g (x) > 0, x e S.

(ii): if we exclude case (I), we have

I Vfj(x)(x-x)> 0 fora]x e S (3.11)jeL

In view of the condition (ii), we can write

I Vfj(n)(xl-x)> 0 forsome x1 es (3.12)
jeL

Combining (3.11) and (3.10), we have

Vfj (X-) (X-X-) , 0 foralxe X
jeL

By (ii) of Theorem 3.1, we know that g Is a solution of Max fj (x) s.t. g (x) > O, x e S.

0.E.D.

14



Assumption (A): For any xe X (K, ye X (K, let f - rnin (il(x), fj(y)) foreach j eL. Then

)-( {ffb.-(f (X))1L) +0(-)-.) ((f1j.L-(fi (Y) )].L) EW

Theorem 3.21101: Consider (W-K-P). Let W Q E1+. be acute, {fj Wx) E L be

W..quasiconcave, and g (x) be such that X (K) is a convex set. If 7 e X (K) is a nondominated

solution of (W-K-P) associated with W, and Assumption (A) holds, then there exists nonzero p 6 - W*

such that
I pjft(-) 2:7 pf tj(x) for allxe X (K) .

I eL j eL

Theo rem 3.3 181 : Let e X (K) . If there exists p e-W*such that 7, P f)(- 2t IpAf1 xM
j r=L j eL

for all xe (K

then

Lemma 3.1 181: Let 3te X (K) and g (x) be Fr6chet differentiable at R ,then
T (X (K) , R) C:- C (3), where

By Lemma 2.1, T *(X (K), 9) -C(nx). Thus we can make the following definition.

Definition 3.1: A point ge X (K) is said to be a "regular point" of the constraint set X (K) if
T(X (K) , ) c-C (R).

Theorem 3.4: Consider (W-K-P). Let {fj (x) je be W-quasiconcave and g (x) be such that

X (K) is convex set. If Xe X (K) is a nondominated solution of (W-K-P) associated with W and a
regular point of X (K) ,then there exist nonzero p e -W* and Y e -K* such that

I j in v~-
j e L

Y g(n) =o0

15



Proof: By Theorem 3.2, there exists a nonzero pr= -We such that

i pix 7 p1j() foralxeX(K)

jeL jel-

By Theorem 3.3, we have

je L

Since Is a regular point, we have that

je L

Then there exists y eK wi vth y1t g (R' 0 such that

that is

je L

9 g(n -0

Q.E.D.

Theorem 3.5: Consider (E14. -K-P), Let g be such that X (K) is a convex set,

pe -(EtQ) and I mfi: pi *, 1 :i1:11*0. Let At j e be Et+(k) -strctly quasconcave for some k e 1,

and9e X (K) bea ocal soltion ofMax 1: AfiXW , s.t. x eX (K) ,then 9 s aPareto-opdmal

solution of (El+ -K-P). e

Proof: Assume to the contrary that 9 is niot a Pareto-optimal solution c I (E(+-K-P), i.e.,
there exists some 'X e X (K) such that

j (x) n(x for al je L

16



then for any 0 < g < 1, we have

Ifj (X- + g.( -')) tj P(') forall jeL

and

fk(X +9 O (- x)) > fk x)

hence

I p * t(X-Ox -))> 7, pi fi(') forall 0 < g.<1.

iEL IEL

We have a contradiction.

Q.E.D.

Theorem 3.6: Consider (E[+-K-P). Let g be such that X (K) S is a convex set,

p G- (Et+)* and I , { i: p 0, 1 : !S ) * 0. Let {fj }je L be Et+ (k) - strictly quasiconcave for some

k e 1, and {T - i - 1, ..... be a partiton of L such that for each i, Y, pj t (x) is quasi-concave. Let
j Ti

XE X (K)

(i) if foreachi (1:i51), Y pjVfj(R)(x-")x-0for

all x r X (K), and there exists at least one xiE S such that I PVf (x) (xL-) < 0

• jeT1

or

(i) If {fj (x) }j L are twice differentiable on S and for each 1 (1 :5 i < k),

SpjVf (R) (x-x) - 0 for all x e X (K) and there exists at least are xie S such that

jETi

. p1Vfj (Y) (x'- ) > 0, then X is a Pareto optimal solution of (Et+-K-P).

*j jeTi

Proof: The proof follows directly from Theorem 3.1 and Theorem 3.5.
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Theorem 3.7: Consider' (Ei+- ET-P). Lt pe- (EY+)*and I-(l: pi 0, 1:519I1 * 0.
Let {Vj =L be'k srclqaiocvfroee, p f be quasiconcave, and g be

E.T -quasi-concave. Let (x- X) satisfy

7, pjVfj(I)+! t Vg(x-).O

jeL

vg(-X)-O, 1>O

(I) If there exists some xle S such that I pjVtj-) (x1I)<0

jeL

or

(ii) iN there exists some x1 e S such that

7,P xx-x*
jeL

and {fj )j e L s twice differentiable then R Is a Pareto-optimal solution of (Et ..- E'-P3).

Proof: The proof follows from corollary 1 of Theorem 3.1 and Theorem 3.5.

Theorem 3.83: Consider (Et +- ET~ -P). Let pr6 - (Et+)* and I - { i:p1 * 0, 1 :9 i:51 I }contain at

least two elements. Let (fj )j e be Et +, (k) --strictly quasiconcave for some k e 1, g be such that X (K)

is aconvex set xIk nt X (K) . If

, p1Vfj(-x)m0
JeL (3.14)

then X Is a Pareto-optimal solution of (Et +-K-P).

18



Proof: Assume to the contrary that 9 is not a Pareto-optimal solution of (Et+ -K-P), i.e., there
exists some x e X (K), x * R such that

fj (x)> fj (f) foralljeL

and

fjo (xW > ) forsomejo

Then for any 0 < < 1,

let X =X + i (x-x), we have

f] ) : () foraljeL (3.15)

and

fk () > fk (Ix), by strictq uasi-concavity

Hence

V fk x-) > o

Using Theorem (3.14), we have

71 pjVf(x-R) -x-)--v 11X(A(-x-)
jeL
j~k

<0

Then there exists iW I, i * k, such that

V fi, nC x-X) < 0

we have

This contradicts Theorem (3.15) Q.E.D.
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We close this section with the following theorem which was originally given in [8].

Theorem 3.9: Consider (W-K-P). Let W be acute and closed. If for some p e -nt W*,

R e X (K) is a solution of Max je 7, p1jf (x), s.t. x e X (K), then 7 is a nondominated solution of
ieL

(W-K-P) associated with W.

4. Construction of Dominance Cones

We now provide two theorems which indicate how dominance cones can be constructed for

the more general problem (W- 13T -P). Let al e Elt., I - 1,. . . , k, all nonzero. The corresponding half-

spaces are given by Hi = {Z: Zt ai bi) and the bounding hyperplanes by Ji = {Z: Zt ai =bi}.

k k
Let H =S Hi, D r= t Hi and Cj - Hi, where H denotes the closure of the

i-l i-1 i-I
i*j ij

complement Hf of Hi.

Theorem 4.1: Let V c El, be a closed convex cone. if for some j, 1:< j 5 k, aJ 9 V, then for

every ZO e Jj r Int Cj there exists a Ze H such that

z ezO + Int (-V*).

Proof: Assume to the contrary that there is no Z rE H such that z r z° + Int (-V*).

Let S {s: s e Z° -z + Int (-V*), for some Ze Hrn J. It Is straightforward to show that S is a

convex set with 0 0 S. Hence, by the separation theorem, there exists a nonzero p e Elsuch that

pts <0 foralseS.

ForanyZ Hr, ,w e Int (-V') and X > 0, wehave

zO-Z+ Lw G S
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so that

ptz :pt Z-X Pt w.

Hence

Pt ZO pt Z for every Z e WHr Ji (4.1)

and

Pt w:5 0 for every w e Int (-V*) (4.2)

Thus we have that

p e ( Int (-V*)) - -V, i.e., p s 0 (4.3)

Now consider the following system:

atz = 0 (4.4)

ptZ > 0 (4.5)

We claim that (4.4) and (4.5) have at least one solution. To substantiate this, suppose to the

contrary that the system has no solution. That is, for all Z satisfying ait Z - 0, we must have pt Z <0.
By Farkas' lemma, there exists some nonzero number g. such that g aJ - p. If g > 0, we have p > 0,

which contradicts (4.3). If g. < 0, we have aJi -1 p e V, which contradicts aJ 0 V. Hence, (4.4) and

(4.5) have at least one solution, say Z.

Consider the point ZO + a Z. We have that (Z ++ o Zt + J ta 2 a =ZO - bj, for

every a . That is Z° + a Zei J for every a

Since 20 e Int Cj, there exists some zz- < 0 such that

ZO+ aZeC for all a E 0" 01 .

Hence:

Z° + a Ze H) J for all az M-, 01

and

pt(zO + aZ)mptZO + cgptZ cptZ, forall ae(W-, 01

which contradicts (4.1).

Q.E.D.
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We illustrate this Theorem in the following example diagrammed in Fig. 4.1 . -V* shown in Fig.

4.1, is the dominance cone. a2 and a3 , the respective norma's of the segments J2 and J3 , are

elemtns of V. On the other hand, a1 and a4 , the normals of the segmentsJ1 and J4 respec-tively are

not in V. The Pareto-optimal points on J1 and J4 are no longer nondominated points associated with

-V*. For example, see z° in the diagram.. z° is apparently dominated by z1 associated with -V*. Only

the points on J2 and J3 remains nondominated.

Z2

4  4a

H. i  •i

1.

0 z,

Figure 4.1

Next we present the following theorem which was proved in [11] and [191, and can be used to

handle other cases as shown in Figure 4.2

Theorem 4.2 [11, 191 : Let V C El be a closed convex cone. If for some j (1 < j5 <k), aJ
k

V, then for every zo e j n Int Dj there exists a z e r) Hi suchthat z z° +Int(-V).
i-1

In Figure 4.2 the dominance cone is given by -V*. a1 and a2 , the normals to segments J1 and

J2 , respectively, are elements of V, whereas a3 and a4 are not, zo is in J3 . Clearly, z° is dominated by

z' associated with -V*. Furthermore, only the points on J1 and J2 are nondominated points. The

Pareto-optimal points on J3 and J4 are no longer nondoninated points associated with -V*.

22



Z2 4. a3
z-V

J4J3 Z0a 2

4
0 Hii-1

a1

Figure 4.2

Theorem 4.1 and 4.2 thus provide a means for constructing dominance cones that further restrict

the set of Pareto-optimal points in accordance with specified preferences and priorities over outcomes.

(See also the "goal-focusing" ideas and usages of [6], [7] ). For computational practical usages one may

employ hyperplanes to approximate the Pareto-optimal frontier. Objective functions all are linear. The

Pareto-optimal frontier consists of hyperplanes when all the objective functions are linear. The normals of

those hyperplanes corresponding to preferred outcomes are then used to span the cone V and thereby

to obtain the dominance cone W - -V *. This is an evident alternative way to do goal focusing [6], [7].

The sufficient conditions given in Theorem 3.9 can then determine the nondominated solutions

associated with W.

5. An Illustrative Example

Consider the following vector extremal or multi-objective optimization problem in two variables in

which there are three objective functions

f, (x,,x2) - 30XI -Ix?-2x, )(2

4

f3 (x,,x2) - 662=-4-6x, x2
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and two constraints

1 (XI, X2) - 15-xI - X2

g? (x, x2) - 38-3x, - 2x2

The domain of the object and constraint functions is given by the convex set

S={(XI,X 2 ) : 0q xl<10,0<x2 <5101,

and the constraint cone K - E.

The problem may be written as

(Max (fI (XI, X2), f2 (xI, X2), f1 (XI, X2))
(wE+._P)' gi (X,. x2 Z 0, i=-1,.2

(xi, x2) 6 S

We first consider the special case where W - E .The respective Hessian matrices for the

three objective functions are given by

V2f 2 v2 [ 4]%
2

Since V2f2 is a negative definite matrix, f2 is strictly concave and, hence, strictly quasi concave.

V 2t and V2 f3 are neither positive semi-definite nor negative semi-definite, so f1 and f3 are neither

convex nor concave functions. However, fI and f3 are quasi concave on S. Their level sets on S

S a (h) (x {X2) r S: f 1 (XI , x2) Z! cc)

{ (Xl ,x2) e S: X2:9 15- x--}
8 2x,

Sa (3) (Xl ,x2) - S:f 3 (xl ,X2) Z>a}

{(Xl,x x2) <11 -- XI x --

24 6X2

are convex for all a > 0.
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Since f1 and f3 are nonnegative on S, the level sets Sa (f1) and Sx (f3) are also convex

for all ax 0.

Furthermore, fl and f3 are strictly quasiconcave. To see this, consider the indifference sets for

fI and f3.

, (fl) = {(X1 ,x2)6 S: fI (X1 ,X2) - a)

= {(xlx 2 ) e S: 30x1 --1-- 2xX2= a}

I(0 3) {(x, x 2) E S: f3 (l, X2) = a I

{(xl ,X2) e S: 66 x2-L x-& x2 = a.
4

Since neither indifference set contains any straight line segments for any a, fl and f3 are strictly

quasi concave. [13]

By Theorem 3.8, the set of Pareto-optimal solutions constitutes the intersection of the

constraint set with the set D a {(xI, x2 ): .IV fl (xl, x2 ) + 12 V f2 (xl, x2) + X2 V f3 (xl, x2 ) = 0,

Xi, X2, X3 > 0 with at least two .j nonzero). But D is the region bounded by three distinct "contract

curves", one curve for each of the three possible pairs of objective functions:

11 = ((x1, x2 ):X V fl (X1 , x2 ) + X2 V f2 (xl, x2 ) =0, XI,X2, > 0)

T"2-{(xl,x2): ilIVfl(xl-x2 )+ '12 Vf 3 (xIx 2 ) =0, 71 >0,1

F3 - ((Xl,X2): AIVf 2 (xx 2 )+ 92 Vf 3 (x1 ,x2 ) -0, P1, 92, >0,}.

Eliminating X1, .2, 11, 112, I9l, P.2, we obtain

1 , {(x, x2 ): 8 -70 +2xlx2 + 8x1-144x2+360 - 01
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1'2 ( XIX 2 ): 4 i+ 120, + X1X2 - S8x2- 852x + 7920 - 01

1 3 -{(xj. x2 ): 96 X1 84xi - 7i X 2 -274 x2+ 1092x - 1848 - 0).

Hence, the set of Pareto-optimal solutions Is given by the Intersection of the constraint set with the
set bounded by the three contract curves 17i, T72 and T:3 as shown by the shaded region in
Figure 5.1.

Figure 5.1

It

isa
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Next illustrate our approach water procedure for constructing dominance cones, we restrict

attention to two objective functions, f I and f3 , in order that the Pareto-optimal f rontier may be
displayed in two dimensions. We shall employ the following variant of our preceding example.

fj (xi, x2) 30 xi- Ix? - 2 xjx2
4

f3 (XI X2) - 662-J Ix 6 xjx2

g1l(x1,X2) - 15 - XI-X2

92(x 1 X2) - 38- 3x - 2X2

S -( XIX2) t:OSxl15OO:x2!b1O

X (0s {(XI, X2 ) tG S :gi1 (X1,X2 ) Z0,g92(XI, X2) 2t 0

and

2 p Max (f (x, x2),f 3 (x,,x2))

Figure 5.2 depicts the set of Pareto-opti mal solutions of (W-ET-.P) given by the curve

r. r, U{(X X2) t x2 10, 0O9 xi !53.03) U ((X1, X2) t xi1O1, 0O5x2:51.05) uj X (E+2)

Figure 5.2
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Consider a sequence of solutions In I', say (A, B. C, D, E, F, G, H, 0, U, V, W, Z) - ((0. 10),
(2,10), (3.25. 9.66), (4.25, 8.2), (4.5,.7.84), (5.5, 6.48), (6, 5.8), (7, 4.52), (7.5, 3.9), (8.25, 3.01),
(8.25,.3.01), (8.75, 2.43), (9.25, 1.87), (10, 0)).

The corresponding sequence of Pareto-optimal points in objective space is given by IA', B',
C', D', E', F', G'9 H', 0', U', V', W, Z') - ((0, 635), (19, 515), (32.04, 426.05), (53.32, 315.15), (59.37,
290.41), (86.36, 202.8), (101.42, 165.54), (134.48, 103.36), (152.39, 78.16), (180.85, 47.37),
(200.84, 31.32), (221.6. 18.72), (275, 0)). as shown in Figure 5.3 where the shaded region is the

range of (fl, 113) under the domain X (E. )

Figure 5.3
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The Pareto-optimal frontier in Figure 5.3 is approximated by six Une, segments JI,. , J6 given
by

J1 - ( (f1,f3)t: 5.8 fj + f3 -=635, 0:5fi 5 9.37)

J2" -( (fl, f3)t: 2.97 f I + f3 - 487, 59.37:5 f 1 101.42)

J3 -({f0, f3 )t: 1.-9 f I + f3 -=356, 101.42 < fj :134.481

J4  01(f- f3 )1: 1.2 fj + f3 - 265.7, 134.48 <f 1 :180.851

JS. (f 1.13)t: 0.7 f1 + f3 - 175, 180.85 <f11 :9 221.5)

J6= ((fl, f3)t: 0O4 f1 +f13 - 96.4, 221.6 < fj :5275)

Now suppose that the decision maker's preferences or priortles are for outcomes within the
vicinity of G r J2 r) J3. To ensure such outcomes, a cone V can be constructed such that the normals to

J2 andJ 3 1einV,butthenormalsof J1,J4, JS,andJ6areexckjdedfromV. Forexample,

V XaO15 1+i(, ) .~, iJ 0)wIllfutulthis requirement.

Now let W - V*. By Theorem 4.1, none of the points In J, uJ4 u J5 u J6 is anrondominated

point associated with W, and J2 U J3 is the set of all nondominated points associated with W. The

corresponding nondominated solution set Is that part of the curve rof Figure 5.2 extending from E - (4.5,
7.84) to H.-(7,4.52). Notice particularity how much of the Pareto-soptimal curve through A, B, C, ... , Z is

excluded by this dominance (or "goaI-focusing*) cone.
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Consider a sequence of solutions in r, say (A, B, C, D, E, F, G, H, 0, U, V, W, Z) - ((0, 10),

(2,10), (3.25, 9.66), (4.25, 8.2), (4.5, 7.84), (5.5, 6.48), (6, 5.8), (7, 4.52), (7.5, 3.9), (8.25, 3.01),

(8.25, 3.01), (8.75, 2.43), (9.25, 1.87), (10, 0).

The corresponding sequence of Pareto-optimal points in objective space is given by {A', B',

C', D', E', F', G', H', 0', U', V', W, Z'} - ((0, 635), (19, 515), (32.04, 426.05), (53.32, 315.15), (59.37,

290.41), (86.36, 202.8), (101.42, 165.54), (134.48, 103.36), (152.39, 78.16), (180.85, 47.37),

(200.84, 31.32), (221.6, 18.72), (275, 0)), as shown in Figure 5.3 where the shaded region is the

-... ra of &fJ2funder the domain X (E)

Figure 5.3
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The Pareto-optimal frontier in Figure 5.3 is approximated by six line segments J1, ... ,J6 given
by

J1 -{ (fl, f3)t: 5.8 fl + f3 - 635, 0 < fl < 59.37)

J2 - { (f1 , f3)t: 2.97 fl + f3 "467, 59.37:< fl <101.42)

J3 ={ (f1, f)t: 1.9 fI + f3 -356, 101.42 < fl 5134.48)

J4- (fl, f3)t: 1.2 fI + f3 - 265.7, 134.48 < fl < 180.85)

J5 {(f 11,t3)t:0 .7 11 +13 -175, 180.85<fl < 221.5)

J= {(fl, f3)t: 0.4 fl + f3 -96.4, 221.6 < f 1 275}

Now suppose that the decision maker's preferences or priortles are for outcomes within the

vicinity of G' e J2 n J3. To ensure such outcomes, a cone V can be constructed such that the normals to

J2 and J3 lie in V, but the normals of J1, J4, J5 , and J6 are excluded from V. For example,

V -I (1.5, 1) + I (4, 1): X > 0, g 2t 0) will fulfill this requirement.

Now let W = -V*. By Theorem 4.1, none of the points In J, u J4 u J5 U J6 is a nondominated

point associated with W, and J2 U J3 Is the set of all nondominated points associated with W. The

corresponding nondominated solution set Is that part of the curve Tof Figure 5.2 extending from E - (4.5,

7.84) to H - (7, 4.52). Notice particularily how much of the Pareto-soptimal curve through A, B, C, ... , Z is

excluded by this dominance (or "goal-focusing") cone.

6. Concluding Remarks

The theory of quasiconcave functions, as a generalization of concave functions, has been the focus

of much research effort for applications In economics, where many utility and production functions are

quasi-concave but not concave. See [201 for the most recent accumulation of research results. However,
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neither they nor earlier important results (e.g., [1], [12], [13], [14], and [15] extend in any immediate way to

multi-objective programming where the needs, obligations, and preferences of different decision

makers are to be addressed. Beginning in the current paper [10], a start was made with new ideas of "T-

nondominated efficiency" and nondominated solutions for multi-payoff n-person games with interacting or

"cross-constrained" strategy sets.

The present paper building on the results in [8], [9], and [10] has developed some basic ideas and

theory for "cone quasiconcave multiobjective programming", including necessary as well as sufficient

conditions for optimal solutions to such problems.

Thus, with the special method provided for construction of needed dominance cones, this new

instrument can be applied, for example, to secure more apt and improved analysis of conflicting interests

of multiple economic actors (e.g., firms) and synthesis of better policies by their regulating agencies.
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